FutureStarr

triticum aestivum order

triticum aestivum order

triticum aestivum order

triticum aestivum order: suborder tritenoideae, tribe triticinae, genus triticum.Bread wheat is an allohexaploid (an allopolyploid with six sets of chromosomes: two sets from each of three different species). Of the six sets of chromosomes, two come from Triticum urartu (einkorn wheat) and two from a species related to Aegilops speltoides. This spontaneous hybridisation created the tetraploid species Triticum turgidum (an ancestor of wild emmer wheat and durum wheat) 580,000–820,000 Compact wheats (e.g., club wheat Triticum compactum, but in India T. sphaerococcum) are closely related to common wheat, but have a much more compact ear. Their shorter rachis segments lead to spikelets packed closer together. Compact wheats are often regarded as subspecies rather than species in their own right (thus T. aestivum subsp. compactum).

Triticum

via GIPHY

Here we report radiocarbon measurements made on wheat seed tissue (Triticum aestivum L.; winter or spring type growth habit), from the seed archive of the IPK Gatersleben, Sachsen-Anhalt, Germany, which was harvested between 1946 and 2020. The results give an overview of 75 years of radiocarbon concentration evolution in agricultural plant products. The wheat tissue radiocarbon concentrations follow known pre- and post-bomb radiocarbon records, such as the atmospheric Jungfraujoch, Schauinsland, and NH1 datasets. Based on a Northern Hemisphere growing period from April to July, the Gatersleben seed tissue radiocarbon concentration indicates incorporation of fossil carbon of about 1% with respect to the high alpine, clean-air CO2 of the Jungfraujoch station between 1987 and 2019. We propose to use the pre- and post-bomb radiocarbon record of Gatersleben wheat as a reference in forensic investigations, such as the age estimation of paper by analyzing starch used in paper manufacture. Additionally, an advantage of the record reported here lies in its extensibility by adding new analyses from future harvests.

C measurements (e.g., Levin et al 1985, 1997, 2013; Hammer and Levin Reference Hammer and Levin2017) or tree-ring measurements (e.g., Hua et al. Reference Hua, Barbetti and Rakowski2013), with annual radiocarbon measurements on seasonally grown plant tissue (seeds of bread wheat (Triticum aestivum L.), harvested between the years 1946–2020), from the collections of the IPK Gatersleben (Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung). An advantage over existing reference data is the possibility to compile a continuous record of plant-tissue (Source: www.cambridge.org)

 

 

Related Articles