What is a rational number

What is a rational number

What is a rational number

In Maths, a rational number is a type of real numbers, which is in the form of p/q where q is not equal to zero. Any fraction with non-zero denominators is a rational number. Some of the examples of rational number are 1/2, 1/5, 3/4, and so on. The number “0” is also a rational number, as we can represent it in many forms such as 0/1, 0/2, 0/3, etc. But, 1/0, 2/0, 3/0, etc. are not rational, since they give us infinite values. Also, check irrational numbers here and compare them with rational numerals.Rational Numbers are real or complex numbers like the real numbers, complex plane algebra, or double-complex plane algebra which are defined by a real or complex number and its fraction the denominator. They can be written in fraction form (1/5) 0/5, or as a decimal (1. 5), and written as a decimal value of the corresponding decimal expansion.



In this article, we will learn about what is a rational number, the properties of rational numbers along with its types, the difference between rational and irrational numbers, and solved examples. It helps to understand the concepts in a better way. Also, learn the various rational number examples and learn how to find rational numbers in a better way. To represent rational numbers on a number line, we need to simplify and write in the decimal form first.

A rational number, in Mathematics, can be defined as any number which can be represented in the form of p/q where q ≠ 0. Also, we can say that any fraction fits under the category of rational numbers, where the denominator and numerator are integers and the denominator is not equal to zero. When the rational number (i.e., fraction) is divided, the result will be in decimal form, which may be either terminating decimal or the repeating decimal. (Source: byjus.com)


rational number, in arithmetic, a number that can be represented as the quotient p/q of two integers such that q ≠ 0. In addition to all the fractions, the set of rational numbers includes all the integers, each of which can be written as a quotient with the integer as the numerator and 1 as the denominator. In decimal form, rational numbers are either terminating or repeating decimals.

A rational number is any number that can be written as the ratio of two integers, such as \(\frac{1}{2}\), \(\frac{783}{62,450}\) or \(\frac{-25}{5}\). Note that while ratios can always be expressed as fractions, they can appear in different ways, too. For example, \(\frac{3}{1}\) is usually written as simply \(3\), the fraction \(\frac{1}{4}\) often appears as \(0.25\), and one can write \(-\frac{1}{9}\) as the repeating decimal \(-0.111\).... (Source: www.hmhco.com)



Related Articles