Length Width Calculator

Length Width Calculator

Length Width Calculator


shows you how long, wide or the size of specific objects are in feet and inches, centimeters, meters and kilometers.


Imagine a farmer trying to sell a piece of land that happens to be perfectly rectangular. Because he owns some cows that he did not want frolicking freely, he fenced the piece of land and knew the exact length and width of each edge. The farmer also lives in the United States, and being unfamiliar with the use of SI units, still measures his plot of land in terms of feet. The foot was defined to be exactly 0.3048 meters in 1959 after having changed over an extensive period of time, as historically, the human body was often used to provide a basis for units of length, and unsurprisingly, was inconsistent based on time and location. Tangent aside, the farmer's plot of land has a length of 220 feet, and a width of 99 feet. Using this information:

There are many equations for calculating the area of a triangle based on what information is available. As mentioned in the calculator above, please use the Triangle Calculator for further details and equations for calculating the area of a triangle, as well as determining the sides of a triangle using whatever information is available. Briefly, the equation used in the calculator provided above is known as Heron's formula (sometimes called Hero's formula), referring to the Hero of Alexandria, a Greek mathematician and engineer considered by some to be the greatest experimenter of ancient times. The formula is as follows: (Source: www.calculator.net)


Two years have passed since the farmer's pool was completed, and his daughter has grown and matured. While her love for triangles still persists, she eventually came to the realization that no matter how well-"triangled" she was, triangles alone cannot make the world go round, and that Santa's workshop could not plausibly balance on the North Pole, were the world a pyramid rather than a sphere. Slowly, she has begun to accept other shapes into her life and pursues her myriad different interests – currently freestyle BMX. As such, she requires a ramp, but unfortunately for the farmer, not just any ramp. The ramp must be comprised of only shapes that can be formed using multiple triangles, since, like her rap idol B.o.B, the farmer's daughter still has difficulty accepting the reality of curved surfaces. It must, of course, also only use the number 9 in its measurements to reflect her age. The farmer decides that his best option is to build a ramp comprised of multiple rectangles, with the side face of the ramp being in the shape of a trapezoid. As the farmer has now become more comfortable with SI, he is able to be more creative with his use of units, and can build a more reasonably sized ramp while adhering to his daughter's demands. He decides to build a ramp with a trapezoidal face with a height of 9 ft, a bottom base of length 29.528 ft (9 m), and a top base of 9 ft. The area of the trapezoid is calculated as follows:

Another six years have passed, and his daughter has grown into a strong, beautiful, powerful, confident 15-year-old ingrate solely focused on seeking external validation from acquaintances and strangers on social media while wholeheartedly ignoring genuine support from immediate family and friends. Having had an argument with her father about her excessive use of social media, she decides to prey on her father's fear of the unknown, and belief in the supernatural in order to prank him. Not knowing where to start, she walks around town talking to a variety of strangers all of whom seemingly have endless founts of wisdom and advice, where she learns about crop circles and their association with aliens and unidentified flying objects as well as many other topics that ignore all scientific and logical explanations. Having finally been convinced of the spherical nature of the Earth, deleted all her past social media posts relating to B.o.B, and expanded her love of triangles to an acceptance of other shapes, she decides to make a basic crop circle consisting of a number of concentric circles, and wants to determine the area necessary to create a crop circle with an outer radius of 15 ft. She does so using the following equation: (Source: www.calculator.net)



Related Articles